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In a, recent experiment at the zero-gradient
synchrotron, the differential cross section for
w p elastic scattering was measured at a fixed
angle of 180' over the laboratory momentum
range 1.8-5.3 BeV/c. ' The results of this ex-
periment show considerable structure in the
180' differential cross section as a function
of momentum.

In this Letter we present the essential results
of a theoretical calculation which is in good
quantitative agreement with the experimental
data on 180' v p elastic scattering. "' Our cal-
culation is based on the following hypotheses:

(i) The known Y =+1 fermion resonances are
recurrences of three Regge trajectories, name-
ly 6&(I = 2, P = +, ~ = -), N (I= -„P= +, T = +),
N (I=2, P= —,v=-).

(ii) The w p scattering amplitude at 180' is
given by the sum of amplitudes arising from
(a) the presence of the h&, N, N Regge recur-
rences in the direct s-channel [v +p-v +p]
and (b) the exchange of the h5 Regge-pole tra-
jectory in the crossed u channel [v++p-v++pj.
(The value of the A5 trajectory intercept for
180' scattering is estimated by extrapolation
in a Chew-Frautschi plot. ~)

These hypotheses lead to a consistent descrip-
tion of the detailed structure of 180' ~ p scat-
tering based on the spin-parity assignments
expected from the Regge-recurrence concept.
The success of this approach supports in gen-
eral the theoretical treatment of fermion ex-
change by Reggeization of the amplitude. '

Chew-Frautschi plot. '&4 —In Table I the mass-
es of the established resonance states of the
V=+1 fermion system are listed along with their
quantum numbers that have been experimental-
ly determined. ' Figure 1 shows a, possible the-
oretical assignment of these baryon states ac-
cording to the Regge-recurrence concept, as-
suming approximate straight-line trajectories.
On the basis of this Chew-Frautschi plot, the
spin-parity assignments of these I'=+1 fermion
states are predicted as listed in Table I. In
this classification scheme there is at present
no candidate for a third member of the N~ tra-
jectory. As is shown below, a further recur-
rence on the Nz trajectory is not required by
the present 180' v p scattering data. '12

Resonance amplitude (a&, N~, N ).—The am-
plitude resulting from a Regge recurrence in
the s channel reduces to a Breit-Wigner reso-
nance form for s in the vicinity of the physical
resonance. We represent the total amplitude
due to the successive recurrences as a sum
of relativistic resonance amplitudes:

Res + )
1 1 i ~ xs,2(-1) (J+ ~)

2 y x„,(-1) (J+ —,')

N~, N

The sums in Eq. (1) refer to the resonant states
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Table I. Experimental parameters for F =+1 fermion resonance states. The predicted values of spin and parity
(J ) are based on the Regge-recurrence model discussed in the text. Most of the quoted experimental elasticity
parameters xI are based on the proposed J assignments and are calculated from the height of the resonance bumps
in total cross-section data. The final column indicates the elasticity parameters xI used in the calculation of the
180 7t p differential cross section.

Resonancea
(mass in MeV)

Mass
(aev')

Experimental
gP

Predicted
gP

Experimental
width I'
(BeV)

Experimental
elasticity (xI)

Value of

x& used

1b
0.33-0.41c,d

-o.11f
=o.o3f
=0.006f

2/2+
7/2+

11/2+
iS/2'
19/2
i/2'
S/2'
2/2
7/2

11/2
iS/2-

~ 0 ~

0 80c
o.v6b

O. 15-O.25"
=o.ovf
=0.007f

a~(1236) 1.53 2/2 0.125 1
~&(1924) 3 vob 7/2+ c 0.17 0.35
Ag(2420) 5.S6e*f ? 0.31 0.15
a&(284o) 8.07f ? 0.40 0.06
~&(3220) 1O.3Vf 0.44 0.01
N~ (938) 0.88 1/2' ~ 0 ~ ~ 0 ~:( ~ ) 2.85b S/2 0.10 0.80
NY(1518) y 30b 0.125 0.76
N7(2190) 4.80 ?g 0.20 0.15

(2640) 6.97f ? 0.36 0.07

N,'(3o2o) 9.12 ? 0.40 0.01

Using the quantum numbers F for hypercharge, I for isospin, P for parity, and 7 for signature; the symbol 4
denotes g=l, I=2, N denotes V=1, I=2; the subscript n denotes P =+, 7=+; y denotes P = —,7-=-; and 6 denotes—3.
P=+, 7=-.

bA. H. Rosenfeld, Rev. Mod. Phys. 37, 633 (1965).
cP. J. Duke et al. , Phys. Rev. Letters 15, 468 (1965).
dSee Layson, Ref. 7.
A. N. Diddens et al. , Phys. Rev. Letters 10, 262 (1963).

f%'. Galbraith, Proc. Roy. Soc. (London) 289, 521 (1966); A. Citron et al. , to be published.
gSee Carroll et al. , Ref. 11.
hElasticity estimated from Fig. 2 of Ref. c.

listed in Table I. xl represents the elasticity
parameter of the resonance; J, l are the total
and orbital angular momenta, and c = (M'-s)/
MI', '~ where M a,nd I are the mass and full
width of the resonance, respectively. Since
the resonances are, for the most part, highly
inelastic, i.e., xl«1, we use constant widths
as is done in the experimental analysis of res-
onances from total cross-section data. It should
be noted that very inelastic resonances make
only small contributions to Eq. (1).'

Exchange amplitude (AS).—The contribution
to the v p scattering amplitude at 180' [where
u —= ural

——(M'- p2)2/s] from the u-channel exchange
of the A~ Regge trajectory is given by"~"

Regge(+

I 9/2-

I7/2-

l5/2-

I 3/2-

I I/2 .

9/2-

5/2-

3/2-

3/2, P=+, r = —)

I/2, P=+, ~ =+)

I/2, P= —,T= —)

= ( "
) [g(u'u, s) +g(-Ku, s)] I /2-

2 4 6 8 IO 12
U (BeV)'

+ Q qS — —R ~S , 2 FIG. 1. Chew-Frautschi plot '4 of the F=+1 fermion
Regge recurrences.
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where
y(/u ) 1 i—exp[-inn(vu ) ]

g(v'u, s) = B B

0
cosign(v'u )

s )
(3)

Ren(v'u) = 0.15+0.9(vu)2. (4)

We use this form for n(sufi) in the calculation
of the amplitude in Eq. (2); however, the var-
iation with uB is unimportant to the quality of
our fit inasmuch as uB varies only from uB
= 0.19 (BeV)' at 1.6 BeV/c to u~ = 0.05 (BeV)'
at 8.0 BeV/c. We also take y(vuIl) to be con-
stant. Our approximations include neglecting
the second term in Eq. (2).

Interference of amplitudes. —The idea that
the interplay of a direct-channel resonance
with a crossed-channel fermion-pole background
would produce characteristic features in the
angular distribution was suggested by Heinz
and Ross. ' The energy dependence of the 180'
scattering can also yield information on the
parity of the direct-channel resonance as point-
ed out by Kormanyos et al. ' For example, these
authors suggest that the I= —,', 2190-MeV reso-
nance should have J+= -, in agreement with

the assignment in Table I.
The basic premise of our calculation is that

the resultant 180' w p scattering amplitude
can be written as the sum of the amplitudes
of Eqs. (1) and (2). Thus,

Res Regge 2
(5)

The arbitrary scaling factor s, in Eq. (3) is
chosen to be (1 BeV)'. n(vu) is the trajectory
and y(/u) is the dimensionless residue of the

A6 Regge pole. At fu =1236 MeV these Regge
parameters are related to the spin and width
of the (3, 3) resonance, thus n(1236) = —, and

y(1236) )0. We assume that y(v'ufo') has the same
sign as y(1238). n(vu) satisfies a dispersion
relation as a, function of v'u with cuts starting
at thresholds +(M+ p). Although there exists
no theoretical basis for a straight-line trajec-
tory of the form Ren(su) =a+c(/u)2, the empir-
ical classification of Ag in Fig. 1 gives such
a behavior for fu ) 1236 MeV." We make the
simplest possible assumption that this form
for Ren(lu) is valid down to vu =su~ for the
purpose of estimating n(v'u~). '~ From a least-
squares fit to the masses of the A~ resonances,
we find

We are aware that unitarity is not necessarily
insured by the sum of amplitudes in Eq. (5).
However, since the v p angular distribution
is sharply peaked near 180',"fR gg is expect-
ed to contribute predominantly to the high par-
tial waves. Furthermore, the s-channel reso-
nances contribute only a fraction of their uni-
tarity limits due to their small elasticities.
Hence, violations of unitarity are not expect-
ed to occur in Eq. (5).

We have calculated on a CDC-3600 the 180'
v p differential cross section from Eqs. (1),
(2), and (5), using an n(sue) from Eq. (4) and
the resonance parameters (I', M, xl) from Ta-
ble I. The residue y is essentially the only free
parameter in our calculation. No appreciable
variation of the xy from their experimental val-
ues was allowed. The theoretical 180' v P dif-
ferential cross section for @=0.15 is shown
in Fig. 2(a) along with the 180' experimental
data. The model is apparently in good agree-
ment with the experimental data considering
the minimal number of free parameters. It
should be emphasized that the theoretical curve
in Fig. 2(a) represents the absolute differential
cross section and does not involve an arbitrary
normalization. In order to elucidate the inter-
ference between f egge and f es, the real and
imaginary parts of the amplitudes as a function
of laboratory momentum are presented in
Fig. 2(b). The amplitude due to the direct-chan-
nel resonances cannot by itself accommodate
the principal features of the experimental data.
In view of the fact that the relative size (and
also sign) of the real and imaginary parts of

fRegge is tied to its energy dependence through
the value of n(/ufo') [cf. Eq. (3)], it is rather
remarkable that this amplitude allows just the
proper interference to yield the results in
Fig. 2(a). In addition fRegge has the proper
magnitude to explain the 8-BeV data point where
resonance contributions are negligible (cf. Fig. 2).

The I=-,', 2190-MeV state is the key resonance
in our model. A priori this resonance could
be assigned (cf. Fig. 1) as the first recurrence
of Ny(27) or the second recurrence of Nn(92+).
With our model it is possible to reproduce the
two-decade valley in do/dQ near plab =2.1 BeV/
c only with a negative parity assignment for
the I= —,', 2190 resonance and a positive parity
assignment for the I= 2, 2420 resonance. The
fact that the I= &, 2420 resonance lies on a
straight-line extrapolation of the A~ trajectory
lends additional support to a positive parity
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FIG. 2. (a) Theorretical curve for the 180' 7I.
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